1. daļa 1. Aprēķināt 5 1 . (1 punkts) 2. Atrisināt vienādojumu log2 x = 3. (1 punkts) 3. Noteikt parabolas y = x2 + 4 virsotnes koordinātas. (1 punkts) 4. Atrisināt nevienādību √x > 5. (1 punkts) 5. Kuba šķautnes garums ir a . Aprēķināt kuba sānu virsmas laukumu. (1 punkts) 6. Aprēķināt log2 sin π/6 (2 punkti) 7. Atrisināt vienādojumu 3x+2 = ( 1/9 )x . (3 punkti) 8. Atrisināt vienādojumu x = √3 2x . (3 punkti) 9. Atrisināt vienādojumu tg2 x = 3. (3 punkti) 10. Atrisināt nevienādību | 2x 1 | > 3. (3 punkti) 11. Noteikt funkcijas definīcijas apgabalu. (3 punkti) 12. Atrisināt nevienādību cos x > 1/2 . Noteikt atrisinājumus intervālā (0; 2π ). (3 punkti) 13. Dots, ka x2 6x + 2 = (x + a)2 + b . Noteikt a un b vērtības. (3 punkti) 14. Konstruēt funkcijas grafiku. (3 punkti) 15. Janvāri apelsīnu cena pieauga par 10% salīdzinājumā ar decembri, bet februārī par 20% salīdzinājumā ar janvāri. Par cik procentiem pieauga cena februārī salīdzinājumā ar decembri? (3 punkti) 16. Aprēķināt cos x , ja sin x = 1/3 un x ( π/2 ; π ). (3 punkti) 17. Cik veidos no 8 žurnālistiem var izvēlēties 1)
divus žurnālistus braucienam uz Vāciju;
18. Tika aptaujāti 200 cilvēki. Aptaujas rezultāti apkopoti tabulā.
Noteikt varbūtību, ka nejauši izvēlēts aptaujas dalībnieks 1) nodarbojas ar sportu; 19. Doti vektori a = (2; l) un b = (3; 4). Noteikt 1) vektora a garumu; 2) vektora a 2b koordinātas. (2 punkti) 20.Trijstūra ABC laukums ir 15 cm2. / B = 30° un mala BC ir par 4 cm garāka nekā mala AB. Aprēķināt malas AB garumu. (3 punkti) 21. Dots taisnstūris ABCD. Uz tā garākās malas CD konstruēts pusriņķis, kura rādiuss r . Aprēķināt iesvītrotās figūras laukumu. (3 punkti) 22. Regulāras četrstūra prizmas ABCDA1B1C1D1 diagonāle B1D = 6 un tā veido ar sanu skaldni DD1C1 C 30° leņķi. Aprēķināt prizmas augstumu. (3 punkti) 23. Cilindrā ievilkta lode, kuras rādiuss r . Aprēķināt cilindra tilpumu. (2 punkti)
2. daļa 1. Atrisināt vienādojumu sistēmu (6 punkti) 2. Kuteris nobrauca 9 km pa straumi un 14 km pret straumi, cejā kopā pavadot 60 minūtes. Straumes ātrums ir 3 km/h. Aprēķināt kutera ātrumu stāvošā ūdenī. (6 punkti) 3. Dota funkcija f (x) = 2x+3 2x+1 . 1) Noteikt funkcijas grafika krustpunktus ar koordinātu asīm. 2) Noteikt tās x vērtības, ar kurām funkcijas vērtības mazākas par 12. (7 punkti) 4. Piramīdas pamats ir regulārs trijstūris. Divas sānu skaldnes ir perpendikulāras pret piramīdas pamatu. Piramīdas trešā skaldne veido ar piramīdas pamatu leņķi α un šīs skaldnes augstums ir h. Aprēķināt piramīdas tilpumu. (7 punkti)
5. Atrisināt vienādojumu. (6 punkti) 6. Atrisināt nevienādību visām parametra a vērtībām. (8 punkti)
|